Aspect-Level Cross-lingual Sentiment Classification with Constrained SMT
نویسنده
چکیده
Most cross-lingual sentiment classification (CLSC) research so far has been performed at sentence or document level. Aspect-level CLSC, which is more appropriate for many applications, presents the additional difficulty that we consider subsentential opinionated units which have to be mapped across languages. In this paper, we extend the possible cross-lingual sentiment analysis settings to aspect-level specific use cases. We propose a method, based on constrained SMT, to transfer opinionated units across languages by preserving their boundaries. We show that cross-language sentiment classifiers built with this method achieve comparable results to monolingual ones, and we compare different cross-lingual settings.
منابع مشابه
Exploring Distributional Representations and Machine Translation for Aspect-based Cross-lingual Sentiment Classification
Cross-lingual sentiment classification (CLSC) seeks to use resources from a source language in order to detect sentiment and classify text in a target language. Almost all research into CLSC has been carried out at sentence and document level, although this level of granularity is often less useful. This paper explores methods for performing aspect-based cross-lingual sentiment classification (...
متن کاملMultiBooked: A Corpus of Basque and Catalan Hotel Reviews Annotated for Aspect-level Sentiment Classification
While sentiment analysis has become an established field in the NLP community, research into languages other than English has been hindered by the lack of resources. Although much research in multi-lingual and cross-lingual sentiment analysis has focused on unsupervised or semi-supervised approaches, these still require a large number of resources and do not reach the performance of supervised ...
متن کاملTGB at SemEval-2016 Task 5: Multi-Lingual Constraint System for Aspect Based Sentiment Analysis
This paper gives the description of the TGB system submitted to the Aspect Based Sentiment Analysis Task of SemEval-2016 (Task 5). The system is built on linear binary classifiers for aspect category classification (Slot 1), on lexicon-based detection for opinion target expressions extraction (Slot 2), and on linear multi-class classifiers for sentiment polarity detection (Slot 3). We conducted...
متن کاملA Multi-lingual Annotated Dataset for Aspect-Oriented Opinion Mining
We present the Trip-MAML dataset, a Multi-Lingual dataset of hotel reviews that have been manually annotated at the sentence-level with Multi-Aspect sentiment labels. This dataset has been built as an extension of an existent English-only dataset, adding documents written in Italian and Spanish. We detail the dataset construction process, covering the data gathering, selection, and annotation. ...
متن کاملActive Learning for Cross-Lingual Sentiment Classification
Cross-lingual sentiment classification aims to predict the sentiment orientation of a text in a language (named as the target language) with the help of the resources from another language (named as the source language). However, current cross-lingual performance is normally far away from satisfaction due to the huge difference in linguistic expression and social culture. In this paper, we sugg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015